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Summary 
 
Solitons are solutions of certain evolutionary systems governed by nonlinear partial differential 
equations (PDE). The pursuit of these solutions has produced many exciting new ideas in 
mathematics and physics. These ideas turned out to be universal, leading to a wide range of 
applications. The pursuit of these ideas has revealed a fundamental and powerful geometrical 
framework for the investigation of the solution behavior of nonlinear evolutionary PDEs. Here 
we explain how the ideas of soliton theory apply to a leading approach in image analysis called 
template matching. Namely, a certain soliton equation (EPDiff) and its special property (its 
momentum map) hold the keys for optimizing the template matching procedure and achieving the 
three principle goals of an emerging new science called Computational Anatomy. 
 
Anatomical features revealed by modern 
imagery are recognized in computational 
anatomy (CA), by comparisons of shapes. 
The basic CA technique for comparing 
shape is called “template matching” (TM). 
The first goal of CA is to develop a 
comparison process for template matching 
which would automatically select optimal 
paths of transformations depending 
continuously on a parameter and mapping 
between the shapes or images. For this, one 
would need to write an equation whose 
solution would flow along the optimal path 
in the transformation group leading from 
one shape to the other. 
 
The equation needed for CA was discovered 
about a decade ago at Los Alamos by 
Camassa and Holm [1]. It emerged 
unexpectedly in the dynamics of solitons 
describing the evolution of nonlinear 
shallow water waves. 
 

How do nonlinear shallow water waves 
apply to the study of shapes of images? Just 
think of the crests of the waves as the 
outlines, or “cartoons” of the images. Now 
let the moving crests of the waves represent 
the deformation of the outlines of the image. 
Continuing our theme, it turns out the waves 
described by the Camassa-Holm equation 
[1] evolve optimally along a curve in the 
group of smooth invertible transformations 
of shape called the diffeomorphisms (or 
“diffeos,” for short). The diffeo group 
contains the conformal group but acts in any 
number of spatial dimensions, not just the 
plane. In the diffeos the optimal path from 
one shape to another is found by letting one 
of the two shapes be the reference shape and 
taking the other one as the target shape, as 
an optimal control problem. In addition, 
once freed from their context as shallow 
water waves in two dimensions, the 
application of diffeos for transforming 
images allows the shapes on which they act 
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to be compared in three dimensions.  
 
The necessary equation in three dimensions 
is a generalization of the Camassa-Holm 
equation which is now called EPDiff [2]. 
(Of course, Diff stands for “diffeos.”)  
 
EPDiff has several key mathematical 
properties which allow progress toward 
achieving the three principal goals of CA.  
(i) The first goal of automated construction 
of shapes is fulfilled in principle by showing 
that the solutions of EPDiff encode the 
properties required to follow the growth and 
form of anatomical structures.  
(ii) Solutions of EPDiff describe optimal 
smooth paths (called geodesics) in the 
diffeos. So they provide the appropriate 
framework for achieving the second goal of 
CA, namely, optimal comparisons. 
(iii) Finally, singular solutions of EPDiff 
exist and these may be parameterized using 
linear spaces. This property follows from the 
mathematics of the “momentum map.”  
The momentum map describes a class of 
singular solutions that are precisely the 
required transformations of subspaces which 
form anatomical configurations, by 
characterizing the paths of points, curves, 
surfaces and subvolumes. These are called 
“landmarks” in the CA community. 
 
Here is where the properties of nonlinear 
water waves re-enter the picture. Water 
waves have momentum which is exchanged 
when they collide. Do images also have 
momentum? Identifying their outlines and 
landmarks as the analog of solitons using the 
momentum map provided the evolving 
landmarks in the comparison of images with 
characteristics of both a position and a 
momentum, which both live in linear vector 
spaces. This produces a complete non-
redundent specification of the landmarks of 
the image and their evolution in a 
representation that being linear is amenable 

to both statistical studies and error analysis. 
Being solutions of EPDiff ensures that they 
transform along the optimal path from one 
image to another. This confluence of ideas 
has only recently emerged, and much work 
remains to be done to achieve its goals, both 
in the theory and in the applications of these 
soliton ideas to the comparison and 
transformation of images. For a recent 
description in more technical detail of the 
ideas based on soliton theory and a 
bibliography of key papers in the field of 
CA, see [3]. 
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